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Inversions for flows in the solar interior

Motivation

Local Helioseismology

Local Helioseismology seeks to
probe the internal structure of
sun

Fundamental Quantity:
Cross-Covariance

Travel times tell us about
subsurface flows
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Motivation

Local Helioseismology

Forward Problem: Develop model and compare results to
Obs.

Inverse Problem: Compute model using Obs. that
minimizes difference in results

Over 20 years of near continuous observations: enough for
inversion?
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Motivation

Inconsistency in the past
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Computational Helioseismology

Equations

Solve scalar wave equation

L[ψ(rrr , ω)] =
(
ω2 + 2iωγ + 2iωuuu · ∇

)
ψ + c∇ ·

(
1
ρ
∇(ρcψ)

)
= s(rrr s)

using Green’s functions

L[G(rrr , rrr s, ω)] = δ(rrr − rrr s)

to obtain the Cross-Covariance

C(rrr1, rrr2, ω) =
Π(ω)

4iω
[G(rrr2, rrr1, ω; u)−G∗(rrr2, rrr1, ω;−u)]



Inversions for flows in the solar interior

Computational Helioseismology

Numerics

Solve equation using
Finite Elements Method

Use Montjoie Solver

Assume 2.5D geometry

Refinement near surface
and source
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Kernels

Theory

How are travel times sensitive to perturbations to the
model?

Take First Born Approximation (better then ray theory)

Develop sensitivity maps for perturbations→ Kernels

δq =

∫
KKK · uuu drrr

Kk = −2iρ
∫

Wqω [G(rrr2)∂kC(rrr1)−G∗(rrr1)∂kC∗(rrr2)] dω
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Kernels

3D Flow Kernels
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Kernels

Kernels with flows in background model

One advantage of our technique: Iterative Inversions Possible
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Inversions

δq(rrr1; rrr2) =

∫
K (xxx ; rrr1, rrr2)

· uuu(xxx) + n(rrr1, rrr2)
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In matrix form
δq = Kuuu + n,

which can be solved for example using the Regularized Least
Square (RLS) method which minimizes

‖Λ−1/2 (Kuuu − δq) ‖2 + α‖Luuu‖2

where Λ is the noise covariance matrix and L is a smoothing
matrix. It implies

uuu = (K ∗Λ−1K + αL∗L)−1K ∗Λ−1/2δq.
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Inversions

δq(rrr1; rrr2) =
∫

K (xxx ; rrr1, rrr2)

· uuu(xxx) +
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Early Results

With all the ingredients, let’s try invert for Supergranule!

Warning: Early work / SYNTHETIC INVERSION

However...
We need more observations!
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Conclusions

Ingredients for Great Inversion Result:

Choose something the people demand to know X

Sufficient Number of reliable observations X

Good Kernels X

Noise Covariance Matrix X

Inversion Methods X
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