Statistical analysis of the evolution of active region tilt angles

Hannah Schunker A.C. Birch, D.C. Braun, R.H. Cameron, L. Gizon, R. Burston

Importance of Joy's Law

Flux tubes form somewhere in the interior

- below the convection zone e.g. Zwaan 1978; Spiegel & Weiss 1980
- in the convection zone e.g. Charbonneau 2005; Nelson et al 2013
- close to the surface e.g. Brandenburg 2005

Onset and evolution of the tilt angle helps us to understand the origin of surface activity

Joy's Law crucial to surface flux transport & Babcock-Leighton dynamo model e.g. Jiang et al 2014; Dasi-Espuig et al 2010; Cameron et al 2016

Origin of Tilt Angle

Coriolis force acting on East-West flows in the flux tube as it rises through the convection zone

SDO Helioseismic Emerging Active Region Survey

185 'clean' Emerging Active Regions (EARs) + control regions April 2010 to July 2014

60 degree square Postel projected maps

Tracked at the Carrington rotation rate up to 7 days pre- / post-emergence, 45s cadence

Mapped and tracked datacubes every ~6 hours intensity —> averaged continuum images I.o.s. magnetic field —> averaged magnetograms velocity —> travel-times for waves with turning point up to 70 Mm below surface (not inversions!)

Computed by and stored at the German Data Centre for SDO (~15 TB)

Example EARs

SDO / HMI monitoring campaigns allow statistical studies

Kosovichev & Stenflo 2008, Stenflo & Kosovichev 2012, McClintock & Norton 2016

6 hour averaged l.o.s magnetic field maps

-100 G < **B** < 100 G

Defining the Emergence Time

Measuring the location of the polarities

Location identified at 0.5 days and tracked forward/back in time

x feature identification

+ flux weighted c.o.g.

Δ flux c.o.g. Hannah Schunker

Definition of Coordinates

Relative separation

Definition of Coordinates

First time independent motion of the polarities in longitude and latitude has been analysed statistically

Position relative to flux weighted centre

Relative longitudinal and latitudinal separation

Average Motion of Polarities

First time independent motion of the polarities in longitude and latitude has been analysed statistically

first two days after emergence

Excludes Constant Tilt Angle Model

First time independent motion of the polarities in longitude and latitude has been analysed statistically

Emerge roughly E-W aligned

Tilt increases

first two days after emergence

Asymmetry of the Flux Tube

Asymmetric

e.g. Chou & Wang 1987; van Driel-Gesztelyi & Petrovay 1990; Petrovay et al 1990

Leading polarity moves further in the prograde direction than the following polarity, in the retrograde direction.

Longitudinal Separation of Polarities

Average Tilt Angle Evolution

at emergence time, t=0

(excluded anti-Hale regions)

Average Tilt Angle Evolution

Average Tilt Angle Evolution

No flux dependence on change in relative longitudinal or latitudinal separation, or tilt

Joy's Law due to relative latitudinal separation

difference between t=0 and t=2 days

Constraints on Emergence

On average, polarities emerge E-W aligned, and then the tilt angle develops

We cannot exclude the possibility that the tilt angle is set as the flux tube rises through the deeper convection zone

- a writhe

Constraints on Emergence

On average, polarities emerge E-W aligned, and then the tilt angle develops

We cannot exclude the possibility that the tilt angle is set as the flux tube rises through the deeper convection zone

- a writhe
- shredded by the near surface convection

Tilt Angle Relaxation

Tilt Angle Relaxation

Flux tube is tilted as it rises through the CZ Shredded by near-surface convection \rightarrow scatter Magnetic tension forces the polarities to lie directly above the footpoints at the anchoring depth *Chen et al 2017*

deeply anchored flux tubes ? Longcope & Choudhuri 2002

'Relaxation' can be explained by the separation in the longitudinal direction

Passive and Active Components

Latitudinal separation and change is latitude dependent ----- Coriolis force is not flux dependent ----- passive component

What E-W flow is the Coriolis force acting on?

Convection is Important

Flux tubes have rise speeds on the order of the convective velocities *Birch et al 2016*

Polarities separate antisymmetrically in the East-West direction in the first day after emergence Schunker et al 2016

Tilt Angle Evolution

Joy's Law is due to the latitudinal change in separation: not a constant tilt angle *Schunker et al in prep.*

Tilt angle 'relaxation' can be largely explained by the longitudinal separation *Schunker et al in prep.*

Towards Tighter Constraints

Is the Coriolis force responsible for tilt angle? What East-West flow is it acting on?

Motion of the polarities in relation to the flows as a function of *time* and *depth*

Twist of flux tubes

Quantitative comparisons to other numerical models (e.g. deeper; active regions formed by convection *e.g. Cheung et al 2010; Stein 2008*) + rotation

